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Kirchoff’s Voltage Law 
 
Consider a simple electrical circuit: 
 
 
 
 
 
 
 
 
 
 
We find that if the voltage source is on (i.e., V 0≠ ), then there 
will be electric potential differences (i.e., voltage) between 
different points of the circuit.  This can only be true if electric 
fields are present! 
 
The electric field in this circuit will “look” something like this: 
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So, instead of using circuit theory, let’s use our new 
electromagnetic knowledge to analyze this circuit.   
 
First, consider a contour C1 that follows the circuit path. 
 
 
 
 
 
 
 
 
 
 
Using this path, let’s evaluate the contour integral: 
 

( )
1C

r d⋅∫ E  

 
This is most easily done by breaking the contour C1 into six 
sections: section 1 extends from point a to point b, section 2 
extends from point b to point c, etc.  Thus, the integral 
becomes: 
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Let’s evaluate each term individually: 
 
 

Section 1 (a to b) 
 
In this section, the contour follows the wire from the 
voltage source to the first resistor.   We know that the 
electric field in a perfect conductor is zero, and 
likewise in a good conductor it is very small.  Assuming 
the wire is in fact made of a good conductor (e.g. 
copper), we can approximate the electric field within 
the wire (and thus at every point along section 1) as 
zero (i.e., ( ) 0r =Ε ).  Therefore, this first integral 
equals zero! 

( ) 0
b

a
r d⋅ =∫Ε  

 
This of course makes sense!  We know that the electric 
potential difference across a wire is zero volts. 
 
 
  Section 2 (b to c) 
 
In this section, the contour moves through the first 
resistor.  The contour integral along this section therefore 
allows us to determine the electric potential difference 
across this resistor.  Let’s denote this potential difference 
as v1

  : 
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Section 3 (c to d) 
 

Just like section 1, the contour follows a wire, and thus 
the electric field along this section of the contour is 
zero, as is the potential difference between point c and 
point d. 

( ) 0
d
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   Section 4 (d to e) 
 
Just like section 2, the contour moves through a resistor.   
The contour integral for this section is thus equal to the 
potential difference across this second resistor, which we  
denote as v2 : 
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    Section 5 (e to f) 
 
Again, the contour follows a conducting wire—and again, 
the electric field along the contour and the potential 
difference across it are both zero: 
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    Section 6 (f to a) 
 
This final section of contour C1  extends through the 
voltage source, thus the contour integral of this section 
provides the electric potential difference between the two 
terminals of the this voltage source (i.e., ( ) ( )afV P V P− ).  By 
definition, the potential difference between points a and f 
is a value of V volts (i.e., ( ) ( ) Va fV P V P− = ).  Therefore, we 
find that the contour integral of section 6 is : 
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Whew! Now let’s combine these results to determine the 
contour integral for the entire contour C1.   
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A:  Remember, since the electric 
field is static, we also know that 
integral around any closed contour is 
zero.  Thus, we can conclude that: 
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In other words, we find by performing an electromagnetic 
analysis of the circuit, the voltages across each circuit element 
are related as: 

1 2 0v v V+ − =  
 

 
 

 
 
 
 
 
A:  It is true that the result we obtained 
by integrating the electric field around the 
circuit contour is likewise apparent from 
KVL.  However, this result is still 
attributable to electrostatic physics, 
because KVL is a direct result of 
electrostatics! 

Q:  Wait; I’ve forgotten, Why 
are we evaluating these contour 
integrals ? 

Q:  You have wasted my time!  Using only 
Kirchoff’s Voltage Law (KVL), I arrived at 
precisely the same result ( 1 2 0v v V+ − = ).  
I think the above equation is true because 
of KVL, not because of your fancy 
electromagnetic theory! 
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The electrostatic equation : 
 
 

( ) 0
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when applied to the closed contour of any circuit, results in 
Kirchoff’s Voltage Law, i.e.: 
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where vn are the electric potential differences across each 
element of a circuit “loop” (i.e., closed contour). 

 
 
 
 
 

Gustav Robert Kirchhoff 
(1824-1887), German physicist, 
announced the laws that allow 
calculation of the currents, 
voltages, and resistances of 
electrical networks in 1845, 
when he was only twenty-one! 
His other work established the 
technique of spectrum analysis 
that he applied to determine the 
composition of the Sun. 

From www.ee.umd.edu/~taylor/frame5.htm 


